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Abstract

A major concern when estimating linear regression models with panel data is that

coefficients are not always poolable. A common solution to this problem is to split the

sample into groups of cross-sectional units that are in some sense “similar” and to pool

within those groups. However, researchers’ sense of similarity is likely imperfect, and

hence results likely misleading. An arguably better approach is to estimate the unknown

group structure. However, similarly to manual sample splitting, most existing group es-

timators are “one-dimensional” in the sense that they assume that there is a single group-

ing of the cross-sectional units that accounts for the heterogeneity of all slope coefficients,

which is unlikely to be the case in practice. To address this limitation, the present paper

introduces a new estimation approach that is suitable in general when the dimensional-

ity of the group structure is unknown. The asymptotic validity of the new approach is

established and verified in small samples using Monte Carlo simulation. The empirical

usefulness of the approach is illustrated through an application to asset pricing.
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1 Introduction

Pooled fixed effects estimation has always been attractive to empirical economic researchers

working with panel data, as it enables simple and accurate estimation of common slope

coefficients while controlling for some form of unobserved heterogeneity. In practice, how-

ever, there are often reasons to suspect that the estimated coefficients are not common, mak-

ing pooling potentially misleading.1 This is reflected in the empirical literature, where re-

searchers often split their samples and fit separate models to each part. The underlying as-

sumption is that slope coefficients are not entirely heterogeneous, but that there are groups

with common slopes that differ from those of other groups. Examples are pervasive, appear-

ing in almost every corner of applied economics. For example, of the 95 papers published

in The American Economic Review in 2023, 48 involve some form of panel data estimation.

Of these, 36 employ splits along the lines just described, using a variety of splitting criteria

deemed relevant to the specific research question.

There are several problematic aspects of the above-mentioned practice. One issue is that

researchers often suspect that coefficients may vary in more than one way; that is, there may

be heterogeneity in more than one “dimension”.2 Researchers therefore tend to perform

many splits. However, they usually report only a subset of those results, which means that

the uncertainty regarding the specification of the model is likely understated (see Athey and

Imbens, 2015, and Lu and White, 2014, for discussions). Another issue is that even when

the search procedure is well documented and all results are reported, the grouping of cross-

sectional units is treated as if it was known. This is risky, as misspecified groups can be just

as problematic as ignoring the group structure altogether. In our empirical application to

asset pricing, the dependent variable is stock returns and the regressors represent different

sources of risk, such as “size” and “value” (see Fama and French, 1993).3 If we take the

1If coefficients are heterogeneous and this is ignored, pooled estimators will estimate a linear combination of
the true coefficients, which is arguably not very informative.

2To take a classical example, in the productivity literature studies have emphasized the importance of al-
lowing technology heterogeneity across countries. In the agriculture sector, for instance, this heterogeneity may
reflect differences in agro-climatic environment, agricultural output mix, and level of development and com-
mercialization (see Eberhardt and Teal, 2013, for a thorough discussion).

3“Size” refers to the capitalization of firms. It is based on the observation that smaller firms tend to out-
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stock returns of two firms – one small and the other large – but their value is about the same,

we would expect their size coefficients to differ but not their value coefficients. Thus, while

in terms of value both firms belong to the same group, in terms of size they do not. Of

course, this observation has not gone unnoticed in the empirical literature. Researchers have

responded by splitting their samples into groups, often called “portfolios”, based on certain

predetermined percentiles of both size and value, and reporting estimation results for each

point on the resulting grid. However, the choice of which percentiles to consider is arbitrary.

This arbitrariness is problematic from a model misspecification perspective but also because

it lends itself to misuse (see, for example, Ang et al., 2010, and Berk, 2000).

Observations like those just described have recently motivated researchers in economet-

rics to develop procedures that enable the estimation of unknown group structures. Promi-

nent examples include Bonhomme and Manresa (2015), Lin and Ng (2012), Miao et al. (2020),

Mehrabani (2023), Sarafidis and Weber (2015), Su et al. (2016), and Wang et al. (2018). Most

of these studies are based on modifications of the classical k-means unsupervised learning

method for clustering data points, adapted to the panel data regression context.4 How-

ever, the k-means optimization problem is known to be “NP-hard”, meaning that procedures

based on it can be both slow and difficult to get to converge, and even if they do converge it

may not be to the global optimum (see Chetverikov and Manresa, 2022). All studies that we

are aware of require that the number of cross-sectional units, N, is large, which is typically

not the case in the type of macroeconomic and financial applications that we have in mind.

The main limitation, however, which to the best of our knowledge applies to all existing

perform larger ones over time in terms of returns. This is known as the “size effect”. However, while small
firms may have higher returns, they also carry higher risk, because they are often more vulnerable to economic
downturns and may have less resources to fight financial difficulties. By contrast, “value” refers to the book-to-
market ratio of firms. It is based on the observation that firms with high book-to-market ratios, often referred to
as “value firms”, tend to outperform those with low ratios, often referred to as “growth firms”. This is known
as the “value effect”. Value firms are considered undervalued by the market. These are firms that have strong
fundamentals such as earnings, dividends and sales, but their market prices are low given their intrinsic value.
While these firms can offer higher returns, they can also be riskier than growth firms, as they are often associated
with cyclical industries.

4Wang et al. (2018) propose a clustering algorithm for regression via data-driven segmentation, or “CARDS”.
However, this approach assumes that the slope coefficients are pre-ordered, which in practice requires sequenc-
ing of the data. This is the case with a single regressor. If there are multiple regressors, it is not clear how to
proceed.
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studies except for Cheng et al. (2023), Cytrynbaum (2020), and Leng et al. (2023), is that

each cross-sectional unit can belong to only one group. This is true not only in our asset

pricing application, but in general since it seems hard – if not impossible – to a priory rule

out the possibility that there may be more than one reason for why coefficients differ. As we

explain in Section 4, while multi-dimensional group structures can always be represented

in one dimension, the number of one-dimensional groups grows, and hence the number of

members of each group decreases, with the dimensionality of the true structure. The one-

dimensional representation will therefore be relatively heavily parameterized with fewer

observations available for estimating each parameter. Equally as important, the economic

information contained in the true group structure, which is often an object of great interest,

will be lost if the dimensionality is not preserved in the estimation. There is therefore a

need to move beyond the conventional one-dimensional environment and to consider group

structures as potentially multi-dimensional.5

Cheng et al. (2023), Leng et al. (2023), and Cytrynbaum (2020) recognize the importance

of allowing for multi-dimensional group structures; however, while certainly better than

existing one-dimensional alternatives, the structures considered still lack generality. In par-

ticular, while the first two studies consider two group structures – one for the fixed effects

and one for all the slope coefficients, the third assumes that the slopes can be divided into

blocks within which the grouping is the same. All three studies assume that both N and T

are large, and employ versions of the k-means algorithm, making them subject to the same

critique presented earlier.

Partly inspired by one-dimensional studies such as Mehrabani (2023) and Su et al. (2016),

in the present paper we view the determination of the unknown group structure as a shrink-

age problem, and estimate both the regression coefficients, and the groups and their di-

mensionality by applying a version of the least absolute shrinkage and selection operator

5The concept of multi-dimensional group structures should not be mistaken for “soft” (or “fuzzy”) clustering
in which each data point has a probability distribution over multiple clusters. In our paper, each cross-sectional
unit can belong to different coefficient clusters. But the group assignment is based on a vector of coefficients
where for each individual coefficient every cross-sectional unit can only belong to one group. The clustering
problem is therefore not of the soft but of the “hard” type.
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(LASSO), henceforth referred to as “LASSO–MD”. Unlike k-means, the LASSO solution is

convex and can be easily calculated using standard algorithms. The particular objective

function that we consider penalizes small differences in individual slope coefficients across

all pairs of cross-sectional units. This penalty design allows for entirely different group

structures for different slopes. It is therefore possible to accommodate situations like the one

described at the beginning of this section, where there are multiple groups for some slopes,

while only one group exists for others. We do not require that the unobserved heterogeneity

is made up of fixed effects but allow for more general interactive effects in which the effects

may or may not be grouped. We also do not impose any restrictions on the size of the groups,

which is noteworthy, as previous literature typically assumes large groups (see, for example,

Bonhomme and Manresa, 2015, Lin and Ng, 2012, Sarafidis and Weber, 2015, and Su et al.,

2016). Another advantage of the new approach is that it remains asymptotically valid even

if N is small and only T is large.

The rest of the paper is organized as follows: In Section 2, we present the model and the

LASSO–MD procedure that we will use to estimate it. Sections 3 and 4 are concerned with

the asymptotic and small-sample properties of the procedure, respectively. Section 5 focuses

on our empirical asset pricing application. Section 6 concludes. All proofs are provided in

an online appendix.

2 Model and procedure

Consider a scalar panel variable yi,t, observed across t = 1, . . . , T time periods and i =

1, . . . , N cross-section units. The data generating process (DGP) that we consider for this

variable is similar to those considered in the bulk of the previous literature (see, for example,

Mehrabani, 2023, and Su et al., 2016), and is given by

yi,t = αi + x′i,tβi + ui,t, (2.1)

where xi,t := [xi,t,1, . . . , xi,t,P]
′ is a P × 1 vector of known regressors with a := b signifying

that a is defined by b, αi is a cross-section specific constant or “fixed effect” that may be
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correlated with xi,t, and ui,t is an error term. We assume that ui,t has zero mean, which is

without loss of generality since the model includes a constant, and that it is at most weakly

serially and cross-sectionally correlated. In particular, since there is no guarantee that fixed

effects are enough to capture all of the unobserved heterogeneity in yi,t, similarly to Pesaran

and Yamagata (2024) (see also Su and Ju, 2018), we assume that

ui,t = γ′ift + ε i,t, (2.2)

where ft and λi are r× 1 vectors of unobserved common factors and loadings, respectively,

and ε i,t is an idiosyncratic error term. The interactive effects are here given by λ′ift.

The main object of interest in this paper is the p × 1 vector βi := [βi,1, . . . , βi,p]
′ of un-

known slope coefficients. The cross-sectional heterogeneity of this slope vector is typically

assumed to be either completely unrestricted or absent altogether so that β1 = · · · = βN .

However, there are as already mentioned often good reasons to believe that some cross-

sectional units react similarly to changes in the regressors, and the set of similar units is

likely different depending on the regressor being considered.

In the context of the Fama and French (1993) three-factor model considered in the em-

pirical application of Section 5, yi,t typically represents the excess return on asset i during

time period t. The regressors in xi,t consist of a market excess-return (MKT) factor, a size

factor, dubbed “small minus big (SMB)”, which captures the return spread between small

and large firms, and a value factor, dubbed “high minus low (HML)”, which captures the

return spread between high and low book-to-market firms. A fundamental proposition in

asset pricing is that systematically riskier assets should earn higher expected returns. In the

Fama–French three-factor model, the degree of systematic risk is measured by the slope coef-

ficients of the factors, often referred to as “betas”. Since the factors do not vary by asset, any

cross-sectional variation in expected returns must come from the betas. Therefore, if risk is

correctly priced, there should be a systematic relationship between betas and factors; specif-

ically, the beta of SMB (HML) should be larger for relatively small (high book-to-market)

firms (see Chordia et al., 2015, for a discussion). Thus, in terms of the notation of (2.1), we

expect the elements of βi to group differently.
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Consider the p-th element βi,p of βi. The following specification of βi,p allows for the type

of multi-dimensional group structures just discussed:

βi,p :=


θ1,p if i ∈ G1,p
...

θGp,p if i ∈ GGp,p

, (2.3)

where θg,p is the distinct coefficient for group g = 1, . . . , Gp with Gp ∈ {1, . . . , N} being the

total number of groups based on slope p. The set of cross-sectional units that are members

of group g is here denoted Gg,p ⊆ {1, . . . , N}. We naturally assume that Gg,p ∩Gg′,p = ∅ for

all g 6= g′, so that if the i-th cross-sectional unit is assigned to group g, it cannot be assigned

to any other group g′. If cross-sectional units i ∈ Gg,p and j ∈ Gg′,p are assigned to different

groups g 6= g′ based on slope coefficient p, we do not exclude the possibility that i, j ∈ Gg,p′

for p 6= p′, so that the two units are assigned to the same group g based on slope p′ 6= p.6

We do not impose any restrictions on the size of the groups. Hence, there might just

be one group (Gp = 1) containing all N cross-sectional units, so that β1,p = · · · = βN,p,

but there can also be N groups (Gp = N) with just one cross-sectional unit in each, so that

βi,p = β j,p for all i 6= j. The fact that in the present paper there are no restrictions in this

regard is noteworthy because in the existing literature it is standardly assumed that the size

of the groups is expanding with N (see, for example, Bonhomme and Manresa, 2015, Lin

and Ng, 2012, Sarafidis and Weber, 2015, and Su et al., 2016). Not requiring large groups is

a great advantage in practice because estimated groups can sometimes be very small, as we

illustrate in Section 5.

Denote by Gp := {G1,p, . . . , GGp,p} the set consisting of all the group sets for slope p and

let θp := [θ1,p . . . , θGp,p]
′ be the corresponding Gp × 1 vector of distinct group-specific coef-

ficients. The set of all group sets for all slopes is given by G := {G1, . . . , GP} with θ :=

[θ′1, . . . , θ′P]
′ being the ∑

p
p=1 GP × 1 vector containing all distinct coefficients. These are the

6Here now is an example that illustrates our notation: Suppose that P = 3 and N = 5. Suppose also that
the vectors of slope coefficients are given by β1 = [0, 1, 0]′, β2 = [1, 2, 0]′, β3 = [0, 2, 0]′, β4 = [0, 1, 0]′ and
β5 = [1, 3, 0]′. The first element of these vectors takes on two distinct values, 0 and 1, which means that G1 = 2.
The groups are given by G1,1 = {1, 3, 4} and G2,1 = {2, 5} for which βi,1 = θ1,1 = 0 and βi,1 = θ2,1 = 1,
respectively. The second slope element takes on three distinct values, 1, 2 and 3, and therefore G2 = 3. The
groups are given by G1,2 = {1, 4}, G2,2 = {2, 3} and G2,3 = 3. The third and final element is always equal to 0,
and therefore G3 = 1 and G1,3 = {1, . . . , 5}.
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objects of interest. Let us therefore denote by G0 := {G0
1, . . . , G0

P} and θ0 := [θ0′
1 , . . . , θ0′

P ]
′ the

true values of G and θ, respectively, where G0
p := {G0

1,p, . . . , G0
G0

p,p} and θ0
p := [θ0

1,p . . . , θ0
G0

p,p]
′

with G0
p being the true value of Gp. The true value of βi is henceforth denoted β0

i :=

[β0
i,1, . . . , β0

i,P]
′. The LASSO–MD estimator can be implemented in three steps.

Step 1 (Demeaning). We begin by eliminating the fixed effects by demeaning the data. This

gives ỹi,t := yi,t − T−1 ∑T
s=1 yi,s and x̃i,t := xi,t − T−1 ∑T

s=1 xi,s, which can be stacked over time

to obtain the following version of (2.1):

ỹi = X̃iβ
0
i + ũi, (2.4)

where ỹi := [ỹi,1, . . . , ỹi,T]
′ and ũi := [ũi,1, . . . , ũi,T]

′ are T× 1 vectors, while X̃i := [x̃i,1, . . . , x̃i,T]
′

is a T × P matrix.

Step 2 (Estimating G0). In the second step, we estimate G0 by minimizing the following

objective function:

L(β) :=
1
T

N

∑
i=1
‖ỹi − X̃iβi‖

2 + λ
N

∑
i=1

N

∑
j=i+1

P

∑
p=1

ωi,j,p|βi,p − β j,p|, (2.5)

where β := [β′1, . . . , β′N ]
′ is a NP × 1 vector, ‖A‖ :=

√
tr(A′A) is the Frobenius norm of

the generic matrix A, λ = λ(T) > 0 is a tuning parameter and ωi,j,p is a certain adaptive

weight. Specifically, ωi,j,p := |β̇i,p − β̇ j,p|−κ, where κ > 0 is a user-specified constant, and β̇i,p

is the p-th element of the unit-specific ordinary least squares (OLS) estimator obtained by

minimizing the first term on the right-hand side of (2.5) with respect to βi;

β̇i :=

 β̇i,1
...

β̇i,P

 = (X̃′iX̃i)
−1X̃′iỹi. (2.6)

By minimizing L(β), we obtain β̂ := [β̂
′
1, . . . , β̂

′
N ]
′, where β̂i := [β̂i,1, . . . , β̂i,P]

′. With this

estimate in hand, we check whether |β̂i,p − β̂ j,p| = 0 or |β̂i,p − β̂ j,p| > 0, and assign cross-

sectional units i and j to the same group if the former condition holds and to different groups

if the latter condition holds. This way we obtain estimators of both the group membership

of each cross-sectional unit and the number of groups for each p. The resulting estimator of
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G0 is henceforth denoted Ĝ := {Ĝ1, . . . , ĜP}, where Ĝp := {Ĝ1,p, . . . , ĜĜp,p} with Ĝp being

the number of distinct coefficient estimates of slope p.

Step 3 (Estimating θ0). In the third and final step, we estimate θ0 conditional on the Step-2

estimate of G0. The implementation of this step is inspired by the literature on structural

breaks and thresholds (see, for example, Hansen, 1999). The basic idea is to first move the

unknown group structure in G0 from β0
i to the regressors using dummy variables, and then

to replace G0 by Ĝ.

We begin by nothing that β0
i,p and θ0

g,p are related through β0
i,p = ∑

G0
p

g=1 1(i ∈ G0
g,p)θ

0
g,p,

where 1(A) is the indicator function for the event A, which equals 1 (0) if A is true (false). Let

us therefore denote by X̃i,p := [x̃i,1,p, . . . , x̃i,T,p]
′ the p-th column of X̃i. Define the T× 1 vector

X̃i,p(Gg,p) := 1(i ∈ Gg,p)X̃i,p, the T × Gp matrix X̃i,p(Gp) := [X̃i,p(G1,p), . . . , X̃i,p(GGp,p)], and

the T×∑P
p=1 Gp matrix X̃i(G) := [X̃i,1(G1), . . . , X̃i,P(GP)]. In this notation, note how we have

X̃iβ
0
i = ∑P

p=1 X̃i,pβ0
i,p = ∑P

p=1 ∑
G0

p
g=1 X̃i,p(G

0
g,p)θ

0
g,p = ∑P

p=1 X̃i,p(G
0
p)θ

0
p = X̃i(G

0)θ0. The model

in (2.4) can therefore be rewritten very conveniently in the following way:

ỹi = X̃i(G
0)θ0 + ũi, (2.7)

The proposed LASSO–MD estimator θ̂ of θ0 is simply the pooled OLS estimator of (2.8) with

Ĝ in place of G0;

θ̂ :=

 θ̂1
...

θ̂P

 =

(
N

∑
i=1

X̃i(Ĝ)′X̃i(Ĝ)

)−1 N

∑
i=1

X̃i(Ĝ)′ỹi. (2.8)

Some remarks are in order. In most situations of empirical relevance, the fixed effect αi

is a nuisance parameter that is not of any particular interest by itself. However, since αi may

be correlated with xi,t, it can also not be ignored or else our proposed LASSO–MD approach

will be rendered omitted variables biased. It is therefore essential to be able to appropriately

control for αi. This is where the demeaning in Step 1 comes in. It ensures that LASSO–MD

is exactly invariant with respect to αi.
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However, there are situations in which αi is an object of interest. In our empirical appli-

cation, αi is the excess return on the zero-beta asset, often referred to as that asset’s “alpha”.

If riskless borrowing and lending are allowed, the zero-beta asset earns the risk-free rate

and its excess return is zero, that is, αi = 0. The Fama–French three-factor model predicts

that only the MKT, SMB and HML factors are priced. A rejection of the null hypothesis of

αi = 0 therefore means that these three factors are not enough to explain the average level of

returns in excess of the risk free rate.7 In this case, αi measures the degree of “mispricing”,

which may well have a group structure, just like βi.

If the purpose is not just to eliminate αi but to estimate it, then Step 1 of the estimation

procedure must be suitably modified. This is done by replacing ỹi,t, x̃i,t and β0
i by yi,t, (1, x′i,t)

′

and (αi, β0′
i )
′, respectively. The resulting model for ỹi has exactly the same from as in (2.4)

but with X̃i and β0
i being of dimension T × (P + 1) and (P + 1)× 1, respectively. Given this

modification, Steps 2 and 3 are unaffected.

A word about Step 2: The second term appearing on the right-hand side of (2.5) is a

penalty that to the best of our knowledge has not been used in the literature before. The

paper that is closest to ours in this regard is Mehrabani (2023). However, his penalty is of the

following group fused LASSO type: λ ∑N
i=1 ∑N

j=i+1 ωi,j‖βi − βj‖, where ωi,j := ‖β̇i − β̇j‖−κ.

The use of the Frobenius norm here means that Mehrabani’s version of the LASSO penal-

izes small differences in entire vectors of slopes, which means that it shrinks those vectors

towards one another and assigns the associated cross-sectional units to the same group. Con-

versely, sufficiently large differences causes the procedure to assign the associated units to

different groups, and it does so regardless of whether those differences emanate from all

vector elements or just a subset. This means that the estimated group structure will be one-

dimensional even if the true structure is in fact multi-dimensional. In our Monte Carlo and

empirical studies, we elaborate on this point.

The above concerns motivate the use of a penalty of the “`1-type” that penalizes individ-

ual slope differences using the `1 norm, as opposed to vector differences using the Frobenius

7The interactive effects model in (2.2) provides a means to allow for possible missing factors.
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norm. As a result, the proposed penalty is suitable for estimating group structures that are

slope-specific. To aid the group selection, we use adaptive weights where high initial differ-

ence estimates receive relatively low penalties, and vice versa.

3 Asymptotic results

Unlike existing studies, the results reported in this section do not require N → ∞. In fact,

as long as N ≥ 2, such that βi,p − β j,p can be computed at least once for every p, N does not

even have to be large. This is an advantage, because in practice N is always finite. However,

we do require T → ∞. This means that the asymptotic approximation offered by our results

is expected to work well in “long” panels where T is larger than N. The main drawback is

that our theory is silent about the effect of increasing N. But then again in practice N is fixed.

We now state the conditions that underlie our fixed-N theory.

Assumption 1.

(a) ε i,s is mean zero and independent of xi,t for all i, t and s with sup1≤i≤N,1≤t≤T E(‖xi,t‖4) <

∞, sup1≤i≤N,1≤t≤T E(ε4
i,t) < ∞ and sup1≤i≤N T−1 ∑T

t=1 ∑T
s=1 |E(ũi,tx̃′i,sx̃i,tũi,s)| < ∞.

(b) For Qi := T−1X̃′iX̃i, we have inf1≤i≤N µmin(Qi) > 0 with probability 1 (w.p.1) and

Qi →p Q0,i = limT→∞ E(Qi) as T → ∞, where inf1≤i≤N µmin(Q0,i) > 0, µmin(A)

signifies the smallest singular value of any matrix A, and→p signifies convergence in

probability.

(c) ft is mean zero and independent of (ε i,s, xi,s) for all i, t and s with sup1≤t≤T E(‖ft‖4) <

∞. Also, λi is non-random with sup1≤i≤N ‖λi‖ < ∞.

Assumption 2. For ∆min := min1≤k<k′≤Gp,1≤p≤p |θ0
k,p − θ0

k′,p|, we have
√

Tλ∆−κ
min → c1 < ∞,

√
T∆min → c2 ∈ (0, ∞] and T(κ+1)/2λ→ ∞ as T → ∞. Also, ‖θ0‖ < ∞.

Assumption 3.

(a) For Q(G0) := T−1 ∑N
i=1 X̃i(G

0)′X̃i(G
0), we have µmin(Q(G0)) > 0 w.p.1 and Q(G0)→p

Q0 := limT→∞ E(Q(G0)) as T → ∞, where µmin(Q0) > 0 w.p.1.
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(b)
√

TU(G0) →d N (0∑P
p=1 G0

p×1, Σ0) as T → ∞, where U(G) := T−1 ∑N
i=1 X̃i(G)′ũi, →d

signifies convergence in distribution, and N (·, ·) denotes a normal distribution.

The estimation of the groups in Step 2 of the LASSO–MD estimation procedure is based

on the unit-specific LASSO estimates β̂1, . . . , β̂N contained in β̂. Assumption 1 ensures that

these estimates are consistent and is not particularly restrictive. The condition in part (a)

that ε i,t and xi,t are independent of each other rules out the presence of lagged dependent

variables in xi,t. This can be relaxed but then ε i,t must be serially uncorrelated.8 The absolute

summability of the autocovariances in the same part ensures that any serial correlation in

x̃i,tũi,t is of the weak form. Part (b) is a standard non-collinearity condition that is easy to

understand. It ensures that T−1X̃′iX̃i is invertible, which in turn rules out time invariant

regressors.9 As pointed out in Section 2, because of the demeaning, LASSO–MD is exactly

invariant with respect to the fixed effect αi; however, it is not invariant with respect to the

interactive effects in γ′ift. Assumption 1 (c), which is similar to Assumption 2 in Pesaran and

Yamagata (2024), ensures that the latter effects do not interfere with the asymptotic validity

of LASSO–MD.

Assumption 2 places restrictions on the tuning parameter λ and on ∆min, which is our

measure of minimum degree of slope heterogeneity required for it to be possible to separate

one group from another. These are needed to ensure the consistency of the estimated group

structure. If ∆min = O(T−1/2+δ) for δ > 0, the conditions placed on λ are satisfied if λ ∝ T−ρ

with ρ ∈ [0, 1/2], which are mild enough to enable data-driven selection via an information

criterion, as we explain in Section 4. The conditions placed on ∆min are also mild, yet more

restrictive than those employed in most one-dimensional studies, as to be expected because

of our more general group structure.10

8An advantage of the fixed-N asymptotic setup considered here is that lagged dependent variables can be
permitted without for that matter requiring bias correction, which is known to be a difficult task in practice,
to the point that it is sometimes better to simply ignore the issue altogether (see Judson and Owen, 1999, for a
general discussion).

9Time invariant regressors in xi,t has to be ruled out even if the data are not demeaned, as in the case discussed
in Section 2 when the fixed effects are parameters of interest. In this case, a constant is appended to xi,t, which
means that there can be no other time invariant regressors.

10For example, Mehrabani (2023) requires that
√

T min1≤g<g′≤Gp ‖θ
0
g − θ0

g′‖ is positive in the limit. This

12



Assumption 3 is a “high-level” condition concerned with the LASSO–MD estimator of

θ0.11 Part (a) does for this estimator what Assumption 1 (b) does for the unit-specific LASSO

estimator. Part (b) is a central limit theorem that holds quite generally. Note in particular that

since the assumption only calls for a large T, the cross-sectional properties of {X̃i(G
0)′ũi}N

i=1

are essentially unrestricted.

An important point about Assumptions 1–3 worth reiterating is that they do not place

any conditions on the group structure contained in G0. Hence, both the number of groups,

G0
p, and the number of units within each group, Gg,p, are completely unrestricted. With these

assumptions, we are ready to state our first result.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, uniformly in i = 1, . . . , N,

∥∥β̂i − β0
i

∥∥ = Op(T−1/2).

Theorem 1 establishes that the unit-specific LASSO estimator is consistent and that the

rate of convergence is given by T−1/2. The theorem is important in itself but also because it

is needed to establish our next theorem.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, uniformly in p = 1, . . . , P, as T → ∞,

P
(∣∣β̂i,p − β̂ j,p

∣∣ = 0 for all i, j ∈ G0
g,p and g = 1, . . . , G0

p
)
→ 1.

Theorem 2 says that with probability approaching one |β0
i,p − β0

j,p| will be estimated to

zero exactly whenever cross-sectional units i and j are members of the same group. But by

Theorem 1 we know that β̂i− β̂j is consistent for β0
i − β0

j for all i and j, regardless of whether

they belong to the same group or not. This implies that the procedure can correctly identify

the unknown group structure. The following corollary formalizes this.

condition is implied by our Assumption 2, as seen by noting that ‖θ0
g − θ0

g′‖2 = ∑P
p=1 |θ0

g,p − θ0
g′ ,p|

2 ≥
P(min1≤p≤P |θ0

g,p − θ0
g′ ,p|)

2.
11Assumption 3 holds under a variety of more primitive conditions. The high-level formulation is chosen

in part because it is standard in the literature (see, for example, Mehrabani, 2023, Su and Ju, 2018, and Wang
et al., 2018), in part because we are not particularly interested in the sets of primitive conditions under which
Assumption 3 holds.
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Corollary 1. Suppose that the conditions of Theorem 2 hold. Then, uniformly in p = 1, . . . , P, as

T → ∞,

(a) P
(
Ĝp = G0

p
)
→ 1;

(b) P
(
Ĝp = G0

p|Ĝp = G0
p
)
→ 1.

Theorem 3 reports the asymptotic distribution of the LASSO–MD estimator θ̂ of θ0, and

it does so conditional on the event that Ĝ = G0, which according to Corollary 1 holds with

high probability.

Theorem 3. Suppose that Assumptions 1–3 hold, and that Ĝ = G0. Then, as T → ∞,

√
T
(
θ̂− θ0)→d N

(
0∑P

p=1 G0
p×1, Q−1

0 Σ0Q−1
0
)
.

Theorem 3 supports asymptotically valid standard normal and chi-squared inference.

Of course, for such standard inference to be possible, we need a consistent estimator of

Q−1
0 Σ0Q−1

0 . In view of Corollary 1, a naturally consistent estimator of Q0 is given by Q(Ĝ).

For Σ0, we employ the usual heteroskedasticity and autocorrelation (HAC) robust estimator.

Denote by Ut(G)′ the t-th row of ∑N
i=1 X̃i(G)′ũi and by ûi := ỹi − X̃i(Ĝ)θ̂ the residual ob-

tained from the fit of (2.8). In this notation, Σ0 is identically the long-run covariance matrix

of T−1/2 ∑T
t=1 Ut(G), which we estimate by applying the kernel method of Newey and West

(1987) to ∑N
i=1 X̃i(Ĝ)′ûi. Similar arguments have been used before by, for example, Bai (2009).

The above results assume that the data have been demeaned prior to the application of

LASSO–MD, as prescribed by Step 1 of the three-step estimation procedure. If the fixed ef-

fects are not demeaned away but included as additional regressors as discussed in Section

2, LASSO–MD can be used to test their significance. Within the context of our empirical

application, testing the null hypothesis that α1 = . . . = αN = 0 is tantamount to testing the

suitability of the Fama–French three-factor model as an asset pricing model. It has there-

fore attracted considerable attention and there is by now a separate literature devoted to it

(see Pesaran and Yamagata, 2024, for a recent overview). However, most tests are multi-

variate, and their performance can be unacceptably poor unless N (T) is very small (large).
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Attempts have been made to combat this problem by imposing sparsity on the N×N covari-

ance matrix of u1,t, . . . , uN,t, and basing estimation on adaptive thresholding or other similar

techniques. The present paper can be seen as another attempt in the same direction. It puts

the sparsity assumption on the differences of the alphas, and uses LASSO–MD to estimate

the resulting groups. Theorem 3 justifies standard significance tests of the grouped alphas.

4 Monte Carlo study

In this section, we report the results of a small-scale Monte Carlo study aimed in part at as-

sessing the accuracy of our theoretical results, in part at evaluating the relative performance

of LASSO–MD when compared to the penalized least squares (PLS) approach of Mehrabani

(2023), which is arguably the closest competitor in the one-dimensional case. The DGP used

for this purpose is given by a restricted version of the one in (2.1) based on setting p = 3 and

xi,t,p = 0.2αi + ei,t,p, and drawing ei,t,p and αi independently fromN (0, 1) (similarly to Wang

et al., 2018). For the error term ui,t, we consider the following DGP (taken from Bai and Ng,

2002):

ui,t = π1ui,t−1 + χi,t +
J

∑
j=1

π2(χi−j,t + χi+j,t), (4.1)

where J = 10, π1 = 0.6, π2 = 0.1, and χi,t ∼ N (0, σ2
i ) such that σi ∼ U (0.5, 1) with U (·, ·)

being the uniform distribution. Hence, the errors are not only serially and cross-sectionally

correlated but also heteroskedastic. Of course, in this paper the most important feature of

the DGP is not the errors, but the slopes, βi = [βi,1, βi,2, βi,3]
′. Three DGPs are considered.

DGP1 (Multi-dimensional group structure).

βi,1 =


0 for i ∈ G0

1,1 = {1, . . . , 0.3N}
1 for i ∈ G0

2,1 = {0.3N + 1, . . . , 0.6N}
2 for i ∈ G0

3,1 = {0.6N + 1, . . . , N}
,

βi,2 =

{
0.5 for i ∈ G0

1,2 = {1, . . . , 0.3N}
1.5 for i ∈ G0

2,2 = {0.3N + 1, . . . , N}
,

βi,3 = 3 for i ∈ G0
1,3 = {1, . . . , N}.
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DGP2 (One-dimensional group structure).

βi,p =

{
1.6 for i ∈ G0

1,p = {1, . . . , 0.4N}
0 for i ∈ G0

2,p = {0.4N + 1, . . . , N}
,

for p ∈ {1, 2, 3}.

DGP3 (Multi-dimensional group structure).

βi,p =

{
1.6 for i ∈ G0

1,p = {1, . . . , τpN}
0 for i ∈ G0

2,p = {τpN + 1, . . . , N}
,

for p ∈ {1, 2, 3}, where τ1 = 0.25, τ2 = 0.5 and τ3 = 0.75.

In DGP1, the size of the slopes, the number of groups and the group members all differ

across p. This DGP is therefore multi-dimensional. DGP2 is of the usual one-dimensional

type with G0
1 = G0

2 = G0
3 = 2 groups. This DGP is included to assess the relative per-

formance of LASSO–MD when the conditions of PLS are met. Like DGP1, DGP3 is multi-

dimensional but here the difference when compared to DGP2 is more subtle. In fact, the only

difference is that in DGP3 the groups are not the same for all p. The main reason for including

this DGP is to illustrate how one-dimensional approaches like PLS may lead to the estima-

tion of a large number of groups. In DGP3 there are just two multi-dimensional groups for

each p. From a one-dimensional perspective, however, there are four groups within which

slopes are constant. The first group has slope coefficient βi = [1.6, 1.6, 1.6]′ and covers the

units i ∈ {1, ..., 0.25N}, while the second, third and fourth groups have βi = [0, 1.6, 1.6]′ for

i ∈ {0.25N + 1, ..., 0.5N}, βi = [0, 0, 1.6]′ for i ∈ {0.5N + 1, ..., 0.75N} and βi = [0, 0, 0]′ for

i ∈ {0.75N + 1, ..., N}, respectively. Accounting for the two multi-dimensional groups in

DGP3 therefore requires four one-dimensional groups.

We consider all combinations of N ∈ {20, 30, 40} and T ∈ {60, 75, 100}, where T is

intentionally larger than N to reflect our large-T and fixed-N asymptotic framework. The

number of replications is set to 1000.12

12With this many replications the simulations were too time consuming for a personal computer. We therefore
used the UPPMAX (Uppsala Multidisciplinary Center for Advanced Computational Science) cluster Rackham,
which is accessible via the SNIC (Swedish National Infrastructure for Computing). Rackham consists of 486
nodes, each containing two 10-core Intel Xeon V4 central processing units. All coding was done in Python.
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The three-step estimation procedure laid out in Section 2 is conditional on a particular

choice of λ. While any choice satisfying Assumption 2 will in principle do, in practice it

may be preferable to set λ in a data-driven fashion. The previous literature has employed

information criteria to handle this issue and so do we. Specifically, the following information

criterion will be used:

IC(λ) :=
1

T − 1

N

∑
i=1
‖ûi(λ)‖2 + ϕ ·

P

∑
p=1

Ĝp(λ), (4.2)

where ϕ = 0.5 log(T)T−1/2 and ûi(λ) is again the residual obtained from (2.8).13 We write

Ĝp(λ) and ûi(λ) as explicit functions of λ to stress that they have been computed for a

particular value of this parameter.14 We follow the convention in the literature of setting the

power parameter in the LASSO weight to κ = 2 (see, for example, Mehrabani, 2023).15

We evaluate the accuracy of both the estimated group structure (Ĝ) and the resulting

LASSO–MD coefficient estimates (θ̂). In particular, while in Table 1 we report the average

and the incorrect selection frequency of the estimated number of groups (Ĝ1, Ĝ2 and Ĝ3), in

Table 2 we report the root mean squared error (RMSE) and the bias of the estimated coeffi-

cients. Because PLS is one-dimensional, it can only estimate one number of groups. We have

already explained how the appropriate target to consider for this approach in DGP3 is given

by 4, as this is the minimum number of one-dimensional groups needed to account for the

heterogeneity of βi. The corresponding PLS targets in DGP1 and DGP2 are given by 3 and

2, respectively. We also computed the frequency with which the procedure incorrectly allo-

cates cross-sectional units to groups conditional on estimating the correct number of groups.

However, this frequency was always zero across all replications and so we do not report the

results.

INSERT TABLES 1 AND 2 ABOUT HERE

13As usual, ϕ is not unique, but it is enough if it satisfies ϕ → 0 and Tϕ → ∞. The proposed specification not
only satisfies these conditions but has been found work well across a broad range of simulation designs.

14The minimization of IC(λ) is carried out by first calibrating λ so that all cross-sectional units are assigned
to one group for all slopes. Let λmax denote this value. We then minimize IC(λ) by searching over 50 evenly
distributed log grids in the interval [0, λmax].

15The choice of κ is not particularly important as the selection of λ adapts.
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We begin by considering the results reported in Table 1 for LASSO–MD. The first thing

to note is that the accuracy of the estimated number of groups is increasing in T, which is

a reflection of Corollary 1 and the consistency of Ĝp. A large T is not necessary, though,

but performance is actually quite good already when T = 60, which is noteworthy given

the complexity of the estimation problem. Accuracy increases also as the number of groups

decreases, which is reasonable since more groups makes for a more challenging estimation

problem.

As already explained, PLS is estimating three groups in DGP1, two in DGP2 and four

in DGP3. Interestingly enough, the accuracy of LASSO–MD is almost uniformly better than

that of PLS even though the estimation problem solved by LASSO–MD is relatively more

complex. This is true not only in DGP1 and DGP3 but also in DGP2. Hence, LASSO–MD

does not lose out to the competition even in the one-dimensional case, which makes it very

attractive in empirical work where the dimensionality of any grouping is rarely known.

Moving on to Table 2, we see that the LASSO–MD coefficient estimator generally works

well, which is just as expected given the accuracy of the estimated number of groups. We

also see that performance is better the larger is T, which corroborates Theorem 3 and the
√

T-consistency of θ̂. Interestingly, the LASSO–MD RMSE is decreasing also in N. Of course,

being based on the unit-specific LASSO estimator, the accuracy of the estimated groups is

not expected to get any better as N increases, and this is confirmed by the results in Table

1. Our fixed-N theory therefore provides a good characterization of the types of samples in

which the proposed procedure is likely to perform well as a whole.

The PLS coefficient estimator also works well but not quite as well as LASSO–MD. As al-

ready pointed out, the reason for why PLS works even in DGP1 and DGP3 when the group

structure is not one-dimensional is that it is always possible to rewrite multi-dimensional

structures in terms of a number of one-dimensional groups. The PLS coefficient estimator

is therefore robust in this sense. It is important to note, however, that unless the true group

structure is one-dimensional, the PLS group estimator does not take into account the infor-

mation contained in that structure, which is wasteful. It is also likely to lead to results that
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are difficult to interpret. In particular, not accounting for the multi-dimensionality of the

problem is likely to lead to the estimation of many groups, as we illustrate in Section 5.

5 Empirical application

Although asset pricing models are supposed to work for individual firms as well as portfo-

lios, they are often estimated and tested using portfolios only. In fact, the use of portfolios

is so widespread that it is hardly ever questioned (see, for example, Berk, 2000). This is cer-

tainly the true for the Fama–French three-factor model, which is almost always fitted to the

25 size and value portfolios initially prescribed by Fama and French (1993). However, there

is recent evidence to suggest that this practice can be problematic.

Ang et al. (2010) point out that grouping firms into a few large portfolios destroys the

cross-sectional variation of the slope coefficients, which is wasteful. They instead recom-

mend using either a larger number of small portfolios or individual stocks. Berk (2000)

argues that portfolio grouping is, to a large extent, arbitrary and that the results can be very

sensitive to this choice. Data snooping is therefore a concern, as researchers can alter their

results by changing how the portfolio grouping is carried out. However, even in the absence

of such data snooping, Berk shows that estimation results can be biased if the grouping is

based on either a variable that is correlated with returns or a variable measured within the

sample. Size and value are not only known to be highly correlated with returns, but they are

also measured within the sample. Lewellen et al. (2010) are also skeptical of using size- and

value-based portfolios. In order to avoid situations in which the data mechanically validates

the model, they recommend using portfolios that do not correlate as strongly with the SMB

and HML factors, such as industry portfolios.

In the present paper, we take the aforementioned concerns and recommendations seri-

ously. The idea is to provide an agnostic assessment of the Fama–French three-factor model

using LASSO–MD. We begin by estimating the model based on industry-level data. If the

size and value effects are at work, we would expect the estimated coefficients, or betas, of the

MKT, SMB, and HML factors to be related to the size and value of the included industries.
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Take SMB as an example. Logic based on the existing empirical evidence using size and

value portfolios suggests that industries with similarly sized firms should group together

and that industries with relatively small firms should have relatively large betas (see Fama

and French, 1993). Moreover, the betas of SMB should be unrelated to value. For HML, we

expect high-value industries to have relatively larger betas.

The monthly data set we use is taken from the Kenneth French’s website.16 We include

the largest sample period possible with no missing values; this means that the sample starts

in July 1969 and that it ends in July 2024, for a total of T = 661 monthly observations. The

included regressors are MKT (MKTt), SMB (SMBt) and HML (HMLt), which are all cross-

sectionally invariant and therefore vary only by month. Hence, in terms of the model in (2.1),

in this application, xi,t = [MKTt, SMBt, HMLt]′. The dependent variable, yi,t, is the (average

value-weighted) excess stock returns for N = 49 industries (similarly to Fama and French,

1997, and Sun et al., 2024). The panel data set that we consider in this section is therefore of

the long type, which means that our theoretical results should provide a good approximation

to the small-sample properties of LASSO–MD. We therefore expect it to perform well.

INSERT TABLE 3 ABOUT HERE

The industry return file contains size and value per industry. We average these over

the sample period and rank industries descendingly so that the industries with the largest

(smallest) size and value are assigned a rank of 1 (49). Table 3 reports the average and

standard deviation of these size and value ranks for each of the estimated groups alongside

the estimated beta and the number of members of each group when applying LASSO–MD

to the demeaned data.

The first thing to note is that there is not just one group but several, and that the num-

ber of groups vary from one regressor to another, which we take as evidence in support

of a multi-dimensional group structure. Another observation is that the estimated groups

are not equal in size but that there are a few groups that are large and many that are very

16The link follows: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

20

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


small.17 This means that it is important to use an approach like LASSO–MD that do not

require groups to be large. It also means that it may be problematic to arrange data in equal-

sized groups based on size and value percentiles, and to assume that slopes are equal within

groups, as is customary in the previous empirical literature. For SMB and HML, the general

pattern is that for betas that are at the end of the estimated range the associated groups are

small and that the large groups are located closer to the middle. For MKT, on the other hand,

the largest group is at the top end of the estimated beta range.

The estimated betas of SMB and HML seem related to size and value. In particular, the

betas are generally increasing (decreasing) in the average size (value) rank, which means

that they are decreasing (increasing) in size (value) itself. The fact that the SMB (HML) betas

are decreasing (increasing) in size (value) is, as already explained, in accordance with our a

priory expectations. However, we also see that the SMB (HML) betas are not flat in value

(size) but that they are decreasing (increasing), too, although the effect is not as pronounced

as for size (value). Hence, the SMB (HML) betas are related not only to size (value) but

also to value (size), which goes against the idea that SMB and HML should capture distinct

sources of risk.

There are essentially three large groups, one for each regressor. For MKT, in terms of the

labelling of Table 3, it is Group 4 (27 industries) that is largest, while for HML it is Group

5 (40 industries). For SMB, Groups 4 (9 industries) and 5 (19 industries) are estimated to

be different but the difference in beta, 0.235 versus 0.237, is economically unimportant. We

therefore treat these groups as one. For the large groups, the average size and value ranks

are about the same, around 25, and the standard deviations are about half of those averages,

which implies that a 95% confidence interval for the mean will cover almost the entire [1, 49]

range of ranks. Most industries therefore have the same betas regardless of their size and

value. In other words, while the SMB and HML betas seem related to size and value, this

effect is driven by only a small number of industries.

The large-group betas of SMB and HML are about the same and fall in the [0.227, 0.237]

17In order to avoid cluttering, Table 3 does not report the members of each group. These results are available
upon request.
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range. The MKT large-group beta is given by 1.095. Fama and French (1997) estimate

industry-specific regressions using a sample covering the months June 1963–December 1994.

They report an average beta of 1.04 for MKT, 0.39 for SMB and 0.02 for HML. The corre-

sponding averages for our more recent sample are given by 1.01, 0.05 and 0.01, respectively.

Hence, while close to the large-group beta for MKT, the average industry betas for SMB and

HML are markedly smaller than our estimated large-group betas. The reason is that there

are many small groups whose betas are smaller than the large-group ones, and this pulls the

average down. In fact, taken at face value, these average estimates suggest that there are no

size and value effects. This illustrates the risk involved when pooling across units that are

not really poolable.18

As already pointed out, the results reported in Table 3 are based on demeaning the data

with respect to industry-specific fixed effects. If we instead include these effects as additional

regressors as discussed in Section 2, the estimated groups for the betas are unaffected. For

the alphas we estimate only one group and the common alpha estimate,−0.039, is very close

to zero. To test whether this estimate is significantly different from zero, we computed a t-

test along the lines explained in Section 3. The associated p-value is 0.125, which does not

provide any evidence against the Fama–French three-factor model.

INSERT TABLE 4 ABOUT HERE

According to our Monte Carlo results, LASSO–MD works relatively well not only if the

group structure is multi-dimensional, which it seems to be in the present application, but

also if it is one-dimensional. Even so, for completeness, Table 4 reports the results obtained

by using Mehrabani’s (2023) PLS approach. As expected given the discussion in Section 4

(of the results for DGP3), PLS estimates many groups, 25 in total. Moreover, because there

are multiple regressors whose estimated slope coefficients all vary to some extent between

groups, it seems very difficult, if not impossible, to determine if the difference from one

group to another is due to one or more coefficients changing. We also see that the procedure

18Averaging across unit-specific slope estimates is a very common form of pooling, often referred to as “be-
tween” pooling.
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estimates one group, Group 16, that is substantially larger than the rest and whose betas

are very close to the large-group LASSO–MD ones. However, the size of this group (21

industries) is much smaller than the largest groups estimated by LASSO–MD, which is again

just as expected given the discussion in Section 4. These results illustrate quite clearly the

loss of information incurred by not accounting for the multi-dimensionality of the grouping

problem.

6 Conclusion

This study proposes a new approach to the estimation of panel data regression models with

interactive effects and possibly heterogenous slope coefficients. The heterogeneity is mod-

elled through a multi-dimensional group structure in which each individual slope coefficient

may have its own set of groups, which means that it is very flexible. The estimation prob-

lem is viewed as model selection issue that is addressed using a novel version of the LASSO

dubbed “LASSO–MD”. The new approach is computationally fast, it does not require large

groups, it is asymptotically valid provided only that T is large, and it has excellent small-

sample properties. It should therefore be a valuable addition to the already existing menu

of estimators of panel data regression models with grouped heterogeneity.
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Table 1: Monte Carlo results for the estimated number of groups.

DGP1 DGP2 DGP3
N T LMD PLS LMD PLS LMD PLS

Incorrect estimation frequency
20 60 [0.286, 0.188, 0.008] 0.376 [0.024, 0.029, 0.025] 0.034 [0.040, 0.024, 0.045] 0.214
20 75 [0.215, 0.153, 0.002] 0.298 [0.014, 0.010, 0.015] 0.016 [0.019, 0.009, 0.021] 0.121
20 100 [0.102, 0.101, 0.002] 0.155 [0.003, 0.006, 0.006] 0.005 [0.006, 0.006, 0.009] 0.048
30 60 [0.391, 0.285, 0.017] 0.516 [0.055, 0.052, 0.070] 0.054 [0.074, 0.035, 0.076] 0.321
30 75 [0.279, 0.234, 0.007] 0.362 [0.033, 0.025, 0.027] 0.029 [0.047, 0.017, 0.031] 0.210
30 100 [0.151, 0.132, 0.001] 0.199 [0.009, 0.009, 0.010] 0.009 [0.016, 0.008, 0.012] 0.083
40 60 [0.696, 0.647, 0.012] 0.770 [0.051, 0.046, 0.065] 0.474 [0.048, 0.033, 0.052] 0.673
40 75 [0.626, 0.560, 0.001] 0.681 [0.020, 0.021, 0.011] 0.021 [0.030, 0.022, 0.020] 0.132
40 100 [0.119, 0.098, 0.001] 0.152 [0.007, 0.006, 0.003] 0.006 [0.015, 0.004, 0.009] 0.054

Average
20 60 [3.337, 2.189, 1.009] 3.409 [2.024, 2.031, 2.027] 2.038 [2.042, 2.025, 2.047] 4.266
20 75 [3.235, 2.154, 1.002] 3.317 [2.014, 2.010, 2.015] 2.018 [2.020, 2.009, 2.022] 4.137
20 100 [3.106, 2.101, 1.002] 3.162 [2.003, 2.006, 2.006] 2.005 [2.006, 2.006, 2.009] 4.049
30 60 [3.493, 2.313, 1.017] 3.751 [2.056, 2.055, 2.075] 2.057 [2.078, 2.036, 2.082] 4.448
30 75 [3.330, 2.250, 1.007] 3.474 [2.034, 2.026, 2.028] 2.029 [2.048, 2.017, 2.032] 4.252
30 100 [3.162, 2.136, 1.001] 3.235 [2.009, 2.010, 2.010] 2.010 [2.017, 2.010, 2.012] 4.095
40 60 [3.783, 2.685, 1.012] 4.032 [2.054, 2.047, 2.071] 2.481 [2.052, 2.035, 2.055] 5.639
40 75 [3.668, 2.575, 1.002] 3.781 [2.020, 2.021, 2.011] 2.023 [2.031, 2.022, 2.020] 4.177
40 100 [3.138, 2.104, 1.002] 3.185 [2.007, 2.006, 2.003] 2.006 [2.015, 2.004, 2.009] 4.061

Notes: “LMD” and “PLS” refer to LASSO–MD and the penalized least squares (PLS) approach of Mehra-
bani (2023), respectively. In DGP1 and DGP3, the group structure is multi-dimensional, while in DGP2 it
is one-dimensional. The top panel reports the frequency of incorrectly estimating the number of groups
across replications. For LASSO–MD, the results have the following form “[x, y, z]”, where x, y and z are the
frequency of incorrectly estimating G0

1 , G0
2 and G0

3 , respectively. For PLS, we report the frequency of not es-
timating max{G0

1 , G0
2 , G0

3}. The bottom panel reports the average of the estimated number of groups across
replications. For LASSO–MD, the results have the same form as in the top panel but now x, y and z are the
average Ĝ1, Ĝ2 and Ĝ3, respectively.
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Table 2: Monte Carlo results for the estimated coefficients.

DGP1 DGP2 DGP3
N T LMD PLS LMD PLS LMD PLS

RMSE
20 60 0.1249 0.1641 0.0492 0.0500 0.0943 0.0451
20 75 0.0691 0.1128 0.0317 0.0336 0.0751 0.0378
20 100 0.0613 0.0846 0.0329 0.0348 0.0583 0.0311
30 60 0.0418 0.0590 0.0225 0.0279 0.0219 0.0540
30 75 0.0637 0.0707 0.0397 0.0323 0.0671 0.0358
30 100 0.0325 0.0477 0.0193 0.0199 0.0247 0.0118
40 60 0.0497 0.0956 0.0202 0.0224 0.0916 0.0293
40 75 0.0300 0.0703 0.0200 0.0133 0.0316 0.0179
40 100 0.0310 0.0315 0.0200 0.0201 0.0335 0.0217

Bias
20 60 0.0050 0.0168 -0.0072 -0.0081 -0.0135 -0.0077
20 75 0.0012 0.0185 0.0052 0.0049 0.0099 0.0022
20 100 0.0026 -0.0037 -0.0039 -0.0044 -0.0067 -0.0002
30 60 0.0053 0.0055 -0.0008 -0.0012 0.0002 0.0030
30 75 0.0036 0.0034 0.0008 0.0013 0.0023 0.0046
30 100 -0.0008 -0.0050 -0.0006 -0.0010 0.0012 0.0000
40 60 0.0004 0.0022 -0.0021 -0.0022 -0.0085 -0.0017
40 75 0.0004 0.0030 0.0013 0.0012 0.0043 0.0010
40 100 0.0038 0.0031 0.0019 0.0019 0.0029 0.0021

Notes: “LMD” and “PLS” refer to LASSO–MD and the penalized least squares (PLS) approach of Mehrabani
(2023), respectively. In DGP1 and DGP3, the group structure is multi-dimensional, while in DGP2 it is one-
dimensional. The numbers reported in the table are the average bias and root mean square error (RMSE)
across replications and coefficients times 100. All results are conditional on the groups being correctly esti-
mated.
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Table 3: Empirical results based on LASSO–MD.

Size Value
Group Beta Mean STD Mean STD GS

MKT
1 0.667 21.5 14.8 18.5 21.9 2
2 0.855 8.5 10.6 36.0 7.1 2
3 0.896 14.8 12.2 34.9 16.5 8
4 1.095 28.3 13.6 22.6 13.0 37

SMB
1 -0.037 11.0 14.1 45.0 5.7 2
2 -0.011 13.6 8.6 23.2 16.3 12
3 0.195 20.5 17.7 42.0 7.1 2
4 0.235 19.1 11.5 23.1 15.1 9
5 0.237 33.1 10.3 24.8 11.2 19
6 0.315 42.0 − 22.0 − 1
7 0.423 46.0 − 2.0 − 1
8 0.447 49.0 − 14.0 − 1
9 0.654 31.0 24.0 28.0 24.0 2

HML
1 -0.511 14.0 − 45.0 − 1
2 -0.272 9.5 3.5 39.5 5.0 2
3 -0.218 23.0 − 40.0 − 1
4 -0.089 27.0 8.5 48.0 1.41 2
5 0.227 24.8 14.4 23.7 12.92 40
6 0.453 38.0 14.1 8.5 3.54 2
7 0.488 46.0 − 2.0 − 1

Notes: This table reports the estimation results based on the proposed LASSO–MD approach. The depen-
dent variable is excess stock returns. The regressors are given by MKT, SMB and HML. “Beta” refers to the
estimated slope coefficient, “Size” and “Value” refer to the size and value rank for each group, respectively,
“Mean” and “STD” refer to the sample mean and standard deviation, respectively, and “GS” refers to the
size of each estimated group. For groups that contain only one industry, the STD cannot be computed and is
hence missing.
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Table 4: Empirical results based on PLS.

Beta
Group MKT SMB HML GS

1 0.665 0.217 0.135 1
2 0.726 -0.069 0.257 1
3 0.820 -0.150 -0.099 1
4 0.831 -0.036 0.209 1
5 0.843 -0.026 0.200 5
6 0.933 0.092 0.010 1
7 0.935 0.108 0.278 1
8 0.968 0.066 0.291 1
9 0.983 0.072 0.275 1

10 0.988 0.093 0.212 1
11 1.004 0.104 0.252 1
12 1.011 0.223 0.205 1
13 1.029 0.123 0.249 1
14 1.038 0.170 0.170 1
15 1.093 0.309 0.221 1
16 1.095 0.229 0.213 21
17 1.097 0.038 0.427 1
18 1.115 0.241 0.219 1
19 1.121 0.219 -0.212 1
20 1.129 0.244 0.194 1
21 1.134 0.530 0.576 1
22 1.162 0.341 -0.183 1
23 1.165 0.633 0.548 1
24 1.227 0.330 -0.230 1
25 1.298 0.718 -0.509 1

Notes: This table reports the estimation results based on the penalized least squares (PLS) approach of Mehra-
bani (2023). The dependent variable is excess stock returns. The regressors are given by MKT, SMB and HML.
“Beta” and “GS” refer to the estimated slope coefficient and the size of each estimated group, respectively.

30


	Introduction
	Model and procedure
	Asymptotic results
	Monte Carlo study
	Empirical application
	Conclusion
	References

